27 research outputs found

    Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes

    Full text link
    Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1. Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    Ways forward for Machine Learning to make useful global environmental datasets from legacy observations and measurements

    No full text
    Advances in geospatial and Machine Learning techniques for large datasets of georeferenced observations have made it possible to produce model-based global maps of ecological and environmental variables. However, the implementation of existing scientific methods (especially Machine Learning models) to produce accurate global maps is often complex. Tomislav Hengl (co-founder of OpenGeoHub foundation), Johan van den Hoogen (researcher at ETH Zurich), and Devin Routh (Science IT Consultant at the University of Zurich) shared with Nature Communications their perspectives for creators and users of these maps, focusing on the key challenges in producing global environmental geospatial datasets to achieve significant impacts.ISSN:2041-172

    Improving the Reliability of Mixture Tuned Matched Filtering Remote Sensing Classification Results Using Supervised Learning Algorithms and Cross-Validation

    No full text
    Mixture tuned matched filtering (MTMF) image classification capitalizes on the increasing spectral and spatial resolutions of available hyperspectral image data to identify the presence, and potentially the abundance, of a given cover type or endmember. Previous studies using MTMF have relied on extensive user input to obtain a reliable classification. In this study, we expand the traditional MTMF classification by using a selection of supervised learning algorithms with rigorous cross-validation. Our approach removes the need for subjective user input to finalize the classification, ultimately enhancing replicability and reliability of the results. We illustrate this approach with an MTMF classification case study focused on leafy spurge (Euphorbia esula), an invasive forb in Western North America, using free 30-m hyperspectral data from the National Aeronautics and Space Administration’s (NASA) Hyperion sensor. Our protocol shows for our data, a potential overall accuracy inflation between 18.4% and 30.8% without cross-validation and according to the supervised learning algorithm used. We propose this new protocol as a final step for the MTMF classification algorithm and suggest future researchers report a greater suite of accuracy statistics to affirm their classifications’ underlying efficacies

    Lowland plant migrations into alpine ecosystems amplify soil carbon loss under climate warming

    No full text
    Climate warming is releasing carbon from soils around the world, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown. Here we used alpine grasslands as a model system to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences short-term soil carbon storage under warming. We found that warming (<1 year) led to negligible alpine soil carbon loss, but its effects became significant and 52% ± 31% (mean 95% CIs) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that soil carbon loss likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration and CO2 release. Our findings suggest that warming-induced range expansions of herbaceous plants may yield a rapid positive climate feedback in this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics

    Understanding climate change from a global analysis of city analogues

    No full text
    Combating climate change requires unified action across all sectors of society. However, this collective action is precluded by the ‘consensus gap’ between scientific knowledge and public opinion. Here, we test the extent to which the iconic cities around the world are likely to shift in response to climate change. By analyzing city pairs for 520 major cities of the world, we test if their climate in 2050 will resemble more closely to their own current climate conditions or to the current conditions of other cities in different bioclimatic regions. Even under an optimistic climate scenario (RCP 4.5), we found that 77% of future cities are very likely to experience a climate that is closer to that of another existing city than to its own current climate. In addition, 22% of cities will experience climate conditions that are not currently experienced by any existing major cities. As a general trend, we found that all the cities tend to shift towards the sub-tropics, with cities from the Northern hemisphere shifting to warmer conditions, on average ~1000 km south (velocity ~20 km.year-1), and cities from the tropics shifting to drier conditions. We notably predict that Madrid’s climate in 2050 will resemble Marrakech’s climate today, Stockholm will resemble Budapest, London to Barcelona, Moscow to Sofia, Seattle to San Francisco, Tokyo to Changsha. Our approach illustrates how complex climate data can be packaged to provide tangible information. The global assessment of city analogues can facilitate the understanding of climate change at a global level but also help land managers and city planners to visualize the climate futures of their respective cities, which can facilitate effective decision-making in response to on-going climate change.ISSN:1932-620

    Nutrient_Enrichment_Dataset.csv

    No full text
    Soil carbon stocks measured directly in each of the nutrient enrichment plots across all of the sites. The treatments included Control (C), Nitrogen (N), Phosphorus (P), Potassium (K), Nitrogen+Phosphorus (NP), Nitrogen+Potassium (PK), Phosphorus+Potassium (PK) and all nutrients combined (NPK). The code used to analyze these data and generate graphs is all included in Supplementary material

    A global test of ecoregions

    No full text
    A foundational paradigm in biological and Earth sciences is that our planet is divided into distinct ecoregions and biomes demarking unique assemblages of species. This notion has profoundly influenced scientific research and environmental policy. Given recent advances in technology and data availability, however, we are now poised to ask whether ecoregions meaningfully delimit biological communities. Using over 200 million observations of plants, animals and fungi we show compelling evidence that ecoregions delineate terrestrial biodiversity patterns. We achieve this by testing two competing hypotheses: the sharp-transition hypothesis, positing that ecoregion borders divide differentiated biotic communities; and the gradual-transition hypothesis, proposing instead that species turnover is continuous and largely independent of ecoregion borders. We find strong support for the sharp-transition hypothesis across all taxa, although adherence to ecoregion boundaries varies across taxa. Although plant and vertebrate species are tightly linked to sharp ecoregion boundaries, arthropods and fungi show weaker affiliations to this set of ecoregion borders. Our results highlight the essential value of ecological data for setting conservation priorities and reinforce the importance of protecting habitats across as many ecoregions as possible. Specifically, we conclude that ecoregion-based conservation planning can guide investments that simultaneously protect species-, community- and ecosystem-level biodiversity, key for securing Earth’s life support systems into the future
    corecore